首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4000篇
  免费   974篇
  国内免费   1724篇
测绘学   58篇
大气科学   124篇
地球物理   2043篇
地质学   3104篇
海洋学   691篇
天文学   9篇
综合类   270篇
自然地理   399篇
  2024年   6篇
  2023年   49篇
  2022年   122篇
  2021年   124篇
  2020年   172篇
  2019年   235篇
  2018年   216篇
  2017年   197篇
  2016年   240篇
  2015年   237篇
  2014年   259篇
  2013年   337篇
  2012年   260篇
  2011年   321篇
  2010年   272篇
  2009年   326篇
  2008年   293篇
  2007年   330篇
  2006年   335篇
  2005年   272篇
  2004年   261篇
  2003年   224篇
  2002年   190篇
  2001年   143篇
  2000年   172篇
  1999年   164篇
  1998年   137篇
  1997年   128篇
  1996年   123篇
  1995年   95篇
  1994年   95篇
  1993年   74篇
  1992年   80篇
  1991年   42篇
  1990年   46篇
  1989年   30篇
  1988年   21篇
  1987年   17篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1979年   6篇
  1977年   8篇
  1954年   6篇
排序方式: 共有6698条查询结果,搜索用时 171 毫秒
71.
高俊  党发宁  马宗源 《岩土力学》2020,41(5):1730-1739
随着沥青混凝土心墙堆石坝的快速发展,超高沥青混凝土心墙堆石坝建设迎来了前所未有的机遇,但随着坝高的增加,心墙的安全挑战也变得异常突出。基于应力水平的定义,提出降低超高沥青混凝土心墙高应力水平的措施,依托心墙应力水平的敏感性研究,推算了独立满足和综合满足心墙屈服剪切破坏控制标准的心墙材料强度参数(最敏感材料参数)取值范围。研究表明,心墙应力水平随坝高和河谷岸坡坡比的增加而显著增大;心墙破坏比 、黏聚力 和内摩擦角 属于高敏感性参数;增大心墙破坏比 、黏聚力 和内摩擦角 能够显著地降低心墙应力水平;推荐适宜建设超高沥青混凝土心墙堆石坝的心墙破坏比 、黏聚力 和内摩擦角 取值范围: 0.8、 0.4 MPa和 31.5°(坝高 200 m),且随坝高的增长梯度按5%/25 m、15%/25 m和5%/25 m进行调整。  相似文献   
72.
油气储层构造应力场的分布特征,对油气运移、注采井网布置、储层改造等具有重要意义。为此,文章从塔河油田AD13井区的地质构造演化入手,基于油田测井资料,结合弹性力学及有限元理论,建立研究区地应力弹性力学计算模型,利用有限元软件对研究区储层地应力进行模拟研究,并将模拟结果与现场地应力实测值进行对比分析。结果表明,研究区最大水平主应力为102~130 MPa,最小水平主应力为87~110 MPa,均为压应力;研究区东部及南部最大水平主应力方向为北东向,西北部最大水平主应力方向为北东东向,西南部最大水平主应力方向为南东向,地应力大小及方向均与实际结果相符。研究结果可为研究区油气勘探开发工程提供科学依据。   相似文献   
73.
宋柳  吕建建  王磊  孙东方  刘萍 《海洋与湖沼》2019,50(5):1080-1090
几丁质酶(chitinase)在甲壳动物的蜕皮、消化和免疫等很多生物学过程中发挥重要功能,为深入探讨几丁质酶的免疫防御机制,本实验利用RACE技术克隆了三疣梭子蟹(Portunus trituberculatus)PtCht6基因。该基因cDNA全长2736bp,开放阅读框(ORF)2103bp,编码700个氨基酸,具有几丁质酶GH18家族典型特征。利用实时荧光定量技术分析PtCht6在三疣梭子蟹不同组织、不同蜕皮阶段、不同病原感染以及低盐胁迫(11)下的表达特征,结果显示:PtCht6在各组织中均有表达且在肝胰腺中的表达量最高;在不同蜕皮时期的肝胰腺中,其表达量由蜕皮后期(A/B)、蜕皮间期(C)、蜕皮前期(D)依次递减(P0.05);人工感染WSSV和副溶血弧菌后.PtCht6的表达量在肝胰腺中分别于12h、72h达到最大值,在血细胞中均于12h达到最大值,且相较于对照组,整体显著上调表达(P0.05);低盐胁迫能够显著抑制该基因的表达,最高抑制73倍(P0.05)。同时发现,低盐环境下感染WSSV后,该基因达到峰值的时间明显延迟(至少延迟12h.P0.05)。该研究结果预示PtCht6作为免疫因子参与三疣梭子蟹的病原防御,且低盐胁迫在一定程度上抑制了该基因的免疫功能。  相似文献   
74.
The Province of Khanh Hoa, Vietnam, is located in the western South China Sea and boasts a shoreline of 385 km and many islands. Previous studies have indicated the extreme diversity and abundance of coral reefs in its waters as compared with other coastal provinces of Vietnam. A study on the resilience of coral reefs against increased surface water temperature and anthropogenic impact is conducted at 19 reef sites in 2015. At each site, a series of parameters (e.g., coral covers, genus diversity, and coral recruitment, substratum heterogeneity, depth, water exchange level, and sediment deposit and water temperature) are measured quantitatively or semi-quantitatively. The measured data are rated based on the relationship between the parameter values and coral susceptibility; the consideration that reef health reflects the biological capability to adapt to environmental changes and the recruitment potential if bleached; and positive or negative influences of physical factors in the mitigation of thermal stress and protecting corals from bleaching. A cumulative analysis enables researchers to divide the studied reefs into four categories based on varying levels of reef health to support resilience, recovery, and vulnerability in the case of increased water temperature. Relevant management interventions for each category and other supporting activities are suggested to enhance management effectiveness and to plan the rehabilitation of coral reefs for biodiversity conservation and touristic development, taking into account the involvement of related stakeholders.  相似文献   
75.
The determination of in situ stresses is very important in petroleum engineering. Hydraulic fracturing is a widely accepted technique for the determination of in situ stresses nowadays. Unfortunately, the hydraulic fracturing test is time-consuming and expensive. Taking advantage of the shape of borehole breakouts measured from widely available caliper and image logs to determine in situ stress in petroleum engineering is highly attractive. By finite element modeling of borehole breakouts considering thermoporoelasticity, the authors simulate the process of borehole breakouts in terms of initiation, development, and stabilization under Mogi-Coulomb criterion and end up with the shape of borehole breakouts. Artificial neural network provides such a tool to establish the relationship between in situ stress and shape of borehole breakouts, which can be used to determine in situ stress based on different shape of borehole breakouts by inverse analysis. In this paper, two steps are taken to determine in situ stress by inverse analysis. First, sets of finite element modeling provide sets of data on in situ stress and borehole breakout measures considering the influence of drilling fluid temperature and pore pressure, which will be used to train an artificial neural network that can eventually represent the relationship between the in situ stress and borehole breakout measures. Second, for a given measure of borehole breakouts in a certain drilling fluid temperature, the trained artificial neural network will be used to predict the corresponding in situ stress. Results of numerical experiments show that the inverse analysis based on finite element modeling of borehole breakouts and artificial neural network is a promising method to determine in situ stress.  相似文献   
76.
When a subsea pipeline is laid on an uneven seabed, certain sections may have an initial elevation with respect to the far-field seabed, eo, and thus potentially affecting the on-bottom stability of the pipeline. This paper focuses on quantifying the effects of the upstream dimensionless seabed shear stress, θ, and Reynolds number, Re, on: (1) the maximum dimensionless seabed shear stress beneath the pipe, θmax, to be compared to the critical shear stress in order to determine whether scour would occur and progress towards an equilibrium state; and, (2) the dimensionless equilibrium scour depth beneath the pipe, Seq/D. Using a 2-D Reynolds averaged Navier-Stokes (RANS) approach along with the k-ω Shear Stress Transport (SST) turbulence model, a parametric study involving 243 computational fluid dynamics (CFD) simulations was conducted. The simulation results were used to develop a closed-form equation for the prediction of θmax. Subsequently, experimental measurements of Seq/D have been compiled from published literature, to develop a new closed-form equation for the prediction of Seq/D with a high correlation to the experimental data. In summary, we present two closed-form equations for the prediction of θmax and Seq/D for pipelines with an initial eo/D, which are applicable for both clear-water and live-bed conditions. The effects of θ and Re have been included, albeit Re having a small influence as compared to the other parameters.  相似文献   
77.
This paper deals with the numerical implementation of a cap model for unsaturated soils. It provides a brief review of existing cap model approaches, based on which an improved model formulated in terms of generalised effective stress and matric suction is derived and described in detail. Although the proposed model is a multisurface plasticity model, it can efficiently be implemented using only single‐surface projections because of the smoothness of the model, which is obtained by construction. Numerical algorithms are provided for these single‐surface stress projections, using a single‐equation approach whenever possible. The robustness of the utilised single‐equation approaches is enhanced by proposing problem‐fitted start‐up procedures based on investigations of the nonlinear projection equations. A comparison of the model response with extensive material test data is used to validate the model and to demonstrate the robust application of the approach to silty sands and low to medium plasticity clays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
78.
The effective stress concept for solid‐fluid 2‐phase media was revisited in this work. In particular, the effects of the compressibility of both the pore fluid and the soil particles were studied under 3 different conditions, i.e., undrained, drained, and unjacketed conditions based on a Biot‐type theory for 2‐phase porous media. It was confirmed that Terzaghi effective stress holds at the moment when soil grains are assumed to be incompressible and when the compressibility of the pore fluid is small enough compared to that of the soil skeleton. Then, isotropic compression tests for dry sand under undrained conditions were conducted within the triaxial apparatus in which the changes in the pore air pressure could be measured. The ratio of the increment in the cell pressure to the increment in the pore air pressure, m, corresponds to the inverse of the B value by Bishop and was obtained during the step loading of the cell pressure. In addition, the m values were evaluated by comparing them with theoretically obtained values based on the solid‐fluid 2‐phase mixture theory. The experimental m values were close to the theoretical values, as they were in the range of approximately 40 to 185, depending on the cell pressure. Finally, it was found that the soil material with a highly compressible pore fluid, such as air, must be analyzed with the multi‐phase porous mixture theory. However, Terzaghi effective stress is practically applicable when the compressibilities of both the soil particles and the pore fluid are small enough compared to that of the soil skeleton.  相似文献   
79.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
80.
Water pipe cooling has been widely used for the temperature control and crack prevention of massive concrete structures such as high dams. Because both under‐cooling and over‐cooling may reduce the efficiency of crack prevention, or even lead to great harm to structures, we need an accurate and robust numerical tool for the prediction of cooling effect. Here, a 3D discrete FEM Iterative Algorithm is introduced, which can simulate the concrete temperature gradient near the pipes, as well as the water temperature rising along the pipes. On the basis of the heat balance between water and concrete, the whole temperature field of the problem can be computed exactly within a few iteration steps. Providing the pipe meshing tool for building the FE model, this algorithm can take account of the water pipe distribution, the variation of water flow, water temperature, and other factors, while the traditional equivalent algorithm based on semi‐theoretical solutions can only solve problems with constant water flow and water temperature. The validation and convergence are proved by comparing the simulated results and analytical solutions of two standard second‐stage cooling problems. Then, a practical concrete block with different cooling schemes is analyzed and the influences of cooling factors are investigated. In the end, detailed guidance for pipe system optimization is provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号